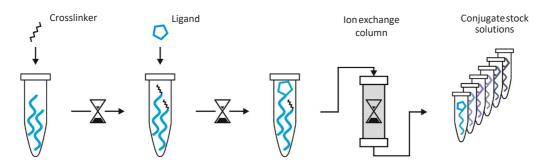
Amine coupling kit 1 for proteins (> 5 kDa)

Functionalization of 48mer nanolevers via amines (-NH₂)

Key Features


- Coupling of biomolecules with primary amines
 (e.g. NH₂-terminus, lysines) to modified nanolevers
 in a reaction tube
- Convenient standard chemistry
- Applicable for proteins (and peptides) (MW > 5 kDa)
- Compatible with all switch SENSE®
 Multi-purpose biochips carrying sequence B48
- Suitable for parallel measurements via DNA encoded addressing

- Coupling of multiple ligands can be performed simultaneously
- Yields >95 % pure ligand-DNA conjugate with controlled quality of your product
- Includes reagents for five individual conjugation reactions (approx. 10-50 regenerations each; up to 500)
- Compatible with automated standard regeneration process

Workflow Overview

3-Step Conjugation Workflow (in-vitro)

1. DNA Modification

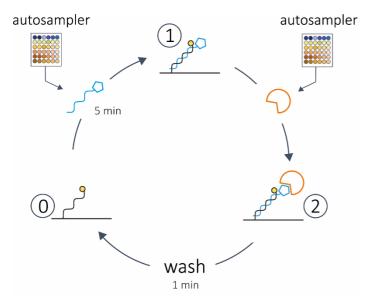
amine reactive groups.

"complementary nanolevers" (cNL) are activated with

2. Ligand Conjugation

After incubation the excess linker is removed by a spin column. The protein/peptide (ligand) is added to the functionalized cNL and incubated for at least 1 h.

3. Purification


The ligand-cNL conjugate is purified using the provided purifier system and protocols. After buffer exchange the conjugates are aliquoted and stored.

4. Ready-to-use

The ligand-cNL conjugate stock solutions are ready for insertion in the DRX autosampler.

Time line: Hands on time < 1 h | Incubation ~ 2 h | Total ~ 3 h

Measurement Workflow with ligand-cNL conjugates

$\widehat{(0)} \rightarrow \widehat{(1)}$

Functionalization of the **switch**SENSE® biochip with ligands by automatic hybridization of ligand-cNL conjugate.

Interaction measurement while flowing analyte solution (association) or buffer solution (dissociation) over the chip.

 \bigcirc \rightarrow \bigcirc

The ligand-cNL analyte complex is washed away from the surface by DNA denaturation under basic pH conditions, which ensures a complete removal of the analyte.

Product Description

Order Number CK-NH2-1-B48 (nanolever sequence B48)

TABLE 1 | Contents and Storage Information

Material	Сар	Amount	Storage	Comment
cNL-B48-01	blue	5 x	-20°C	
cNL-A48 (1 μM)	yellow	500 μL	-20°C	
Buffer C (50 mM Na_2HPO_4/NaH_2PO_4 pH 8.0, 150 mM $NaCl$)	trans- parent	5 x 1.8 mL	-20°C	
Buffer A (50 mM Na_2HPO_4/NaH_2PO_4 pH 7.2, 150 mM $NaCl$)	trans- parent	1.8 mL	-20°C	
Buffer PE40 (10 mM Na_2HPO_4/NaH_2PO_4 pH 7.4, 40 mM $NaCl$, 0.05 % Tween, 50 μ M EDTA, 50 μ M EGTA)	trans- parent	5 x 1.5 mL	-20°C	
ddH ₂ O	trans- parent	1.5 mL	-20°C	
Crosslinker	green	5 x	-20°C	
Purification spin column	red	10 x	2-8°C	
2.0 mL Reaction tubes for Purification spin column		10 x	r.t.	
Centrifugal filter unit (3 kDa MWCO) ¹		5 x	r.t.	
Centrifugation collection tube		10 x	r.t.	

For in vitro use only.

Please check date of expiry on the kit. Products are shipped at ambient temperature. The kit contains reagents sufficient for 5 conjugations of approx. 50-200 μ g biomolecule each. The resin slurry of the Purification spin column contains 0.02 % sodium azide.

¹ For conjugation of proteins with a molecular weight higher than 20 kDa: Centrifugal filter units with a MWCO of 10 kDa can be ordered for a faster concentration process (Please see page 9 for order number).

Additional Materials Required

TABLE 2 | Additional Materials.

Material	Comment
Benchtop microcentrifuge	Capable between 1,000 x g and 13,000 x g
Vortexer	
1.5 mL reaction tubes	
UV-Vis spectroscopy (e.g. Nanodrop)	Concentration determination of the conjugate

All necessary solutions and buffers are included in the kit.

Important Notes

- Do not use any buffer containing primary amines (i.e. Tris, glycine) during conjugation process.
- Dithiothreitol (DTT) can be used up to 1 mM during the conjugation process.
 Do not use 2-Mercaptoethanol or other thiol-based reducing agents during conjugation process. If a reducing agent is necessary, TCEP is recommended up to 1 mM. For reducing agents during interaction measurement, please refer to the switchSENSE® compatibility sheet (application area on www.dynamic-biosensors.com/switchsense).
- Avoid using partially purified protein samples or protein samples containing carriers (e.g. BSA).
- To get highest reaction yields, the ligand should be dissolved in Buffer C. Buffer exchange is recommended prior to conjugation process¹.
- Before you begin, briefly centrifuge all tubes to ensure that all material is at the bottom of the tubes.
- For molecules with a molecular weight around or lower than 5 kDa, special care during purification process shall be taken. A few peptides may not give a proper purification using the provided IEX column. For more information please email support@dynamic-biosensors.com.
- If the pl of the protein is < 6, it might be necessary to use CK-NH2-7-B48¹. For more information, please email support@dynamic-biosensors.com.

¹ See page 9 for order no.

3-Step Conjugation of a Biomolecule to a Nanolever in a Reaction Tube

Please read the entire protocol before starting and **perform conjugation without interruption**.

TIP: the protocol can be performed simultaneously for multiple coupling reactions.

Nanolever Modification

- 1. Equilibrate **two** purification spin columns for one coupling reaction:
 - a. Remove column's bottom closure and loosen cap (do not remove cap).
 - b. Place column in a 2.0 mL reaction tube.
 - c. Centrifuge at 1,500 × g for 1 minute to remove the storage solution.
 - d. Add **400 \muL of Buffer C** on top of column's resin bed. Centrifuge at 1,500 \times g for 1 minute to remove buffer.
 - e. Repeat step d once, discard buffer from the reaction tube. The Purification spin column should be in a dry state now.
- 2. Dissolve cNL-B48-01 (blue cap) in **40 μL Buffer A** prior to use and vortex until solids are completely dissolved and spin down shortly.
- 3. Dissolve the crosslinker (green cap) by adding **100 μL** ddH₂O and vortex until solids are completely dissolved and spin down shortly. **IMPORTANT**: Always use fresh compounds.
- 4. Add **10 μL** of the freshly prepared linker solution to one nanolever aliquot (cNL-B48-01, blue cap). Discard the remaining linker solution from step 3.
- 5. Vortex the reactants for 10 sec, spin down and incubate them for **5 minutes** at room temperature.
 - **IMPORTANT**: Do not exceed incubation time as the reaction yield will decrease.
- 6. Sample loading
 - a. Place columns from step 1 in new 1.5 mL reaction tubes.
 - b. Remove cap of spin column number 1 and apply the sample from step 5 to the top of the resin bed.
 - c. Centrifuge at 1,500 x g for 2 min to collect the sample (flow-through). Discard Purification spin column afteruse.
 - d. Remove cap of spin column number 2 and apply the sample from step c on top of the resin bed.
 - e. Centrifuge at 1,500 x g for 2 min to collect the sample (flow-through). Discard Purification spin column afteruse.

II Ligand Conjugation

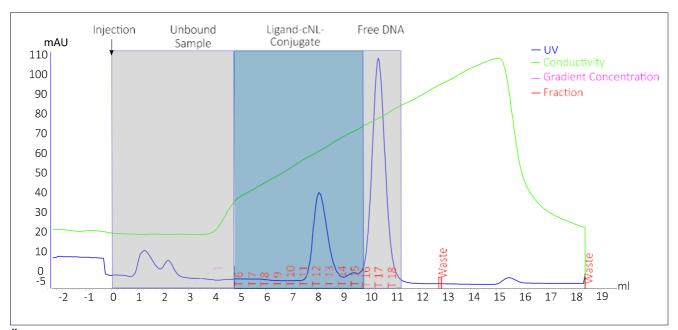
- 7. Add approx. **100** μ g (up to 200 μ g) of the ligand (concentration approx. 0.5 50 mg/mL) to the sample from step 6. For optimal conditions use a volume of approx. 50 μ L.
 - **EXAMPLE**: Adjust protein concentration to 2 mg/mL and use 50 μ L for conjugation.
 - IMPORTANT: Be sure that the storage buffer of the ligand does not contain any primary amines, e.g. Tris buffers, glycine (please see page 4, Important Notes).
- 8. Mix the reaction by pipetting up and down and let it react at room temperature for at least 1 hour. IMPORTANT: Do not vortex. If necessary, the reaction can be carried out at 4 °C with a longer reaction time (e.g. overnight).

IIIPurification & Concentration

- 9. Perform a purification reaction using the ÄKTA Start with the provided column and program. If the volume exceeds 150 μ L, please perform two subsequent runs. Please refer to the Manual Instruction ÄKTA Start.
- 10. Take the fractions with the ligand-cNL-B48 conjugate out of the fraction collector. On page 7 (*Additional Information section:* Purification of a ligand-cNL conjugate) an example chromatogram is shown.
- 11. a. Add the first **500 μL** fraction from the ÄKTA Start to the centrifugal filter unit. Centrifuge at 13,000 x g (up to 14,000 x g) for **10 minutes** and discard flow-through.
 - b. Add the remaining fractions in the same filter unit and repeat the centrifugation step in order to collect all samples in one tube (Please check on page 8: Additional information for the right use of centrifugal filter unit).
 - c. Add **350 μL of PE40** (or TE40, HE40) buffer and centrifuge at 13,000 x g for **10 minutes** and discard flow-through again. If the protein is not stable in **PE40** (or TE40, HE40), please check buffer compatibility with the **switch**SENSE® compatibility sheet (Application area on **www.dynamic-biosensors.com/switchsense**).
 - d. Add **350 \muL of PE40** (or TE40, HE40) buffer and centrifuge at 13,000 x g for **15 minutes** and discard flow-through again.
 - e. To recover the conjugate, place the centrifugal filter unit upside down in a **new** centrifugal collection tube (provided in the Kit). Spin for **2 minutes** at 1,000 x g to transfer the sample to the tube.
- 12. Determine conjugate concentration by using absorbance at 260 nm and the following

equation: $c (conjugate) = A_{260 \text{ nm}}/(490,000 \text{ L mol}^{-1} \text{ cm}^{-1} * d)$ d = optical path length(usually d = 1 cm, please check photometer manual for further information).

- 13. Adjust the concentration to **200nM 1μM** with **PE40** (or TE40, HE40) buffer (including up to 10 % glycerol if needed) and prepare **20 μL** aliquots.
- 14. Store between 8 °C and -86 °C as desired.
- 15. Prior to an interaction measurement: Please add the appropriate reference cNL (e.g. cNL-A48) to the conjugate solution.


Additional Information

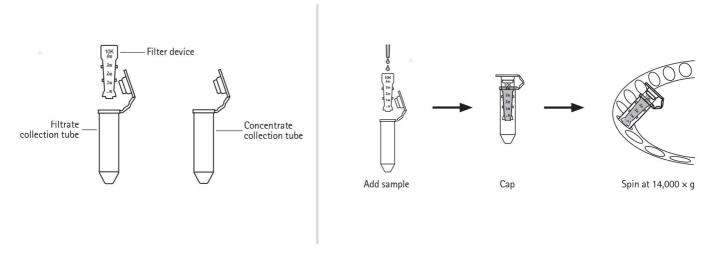
I Purification of a Ligand-cNL Conjugate

- 1. To perform a size analysis during the measurement it has to be ensured that there is no free DNA on the chip and only 1:1 conjugates are present. Therefore crude ligand cNL-B48 conjugates have to be purified by ion exchange chromatography. This quality control step gives you additional useful information about your sample purity.
- 2. We recommend using the provided ÄKTA Start equipped with an anion exchange column. For an example chromatogram see figure below. Prepare 250 mL Buffer A (50 mM Na_2HPO_4/NaH_2PO_4 pH 7.2 and 150 mM $NaCl)^1$ and 250 mL Buffer B (50 mM Na_2HPO_4/NaH_2PO_4 pH 7.2 and 1 M $NaCl)^1$.
- 3. Collect the ligand-cNL conjugate fraction (here: T11-T13), concentrate the conjugate and exchange buffer with your buffer of choice using a Centrifugal filter unit, as described in section II (Additional information, page 8). If you are not sure about your conjugate collect the fractions T6-T15 or email the chromatogram to:

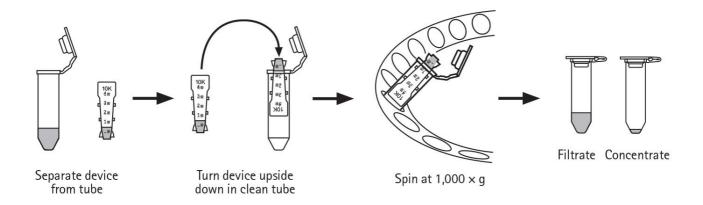
support@dynamic-biosensors.com

Usually, free DNA elutes in fraction T16-T24 and should not be used.

ÄKTA Start chromatogram of a ligand-cNL-B48 conjugate purification.


 $Used\ buffers:$ Buffer A: 50 mM Na₂HPO₄/NaH₂PO₄ pH 7.2, 150 mM NaCl; Buffer B: 50 mM Na₂HPO₄/NaH₂PO₄ pH 7.2, 1 M NaCl. *Column:* DBS-Chromatographic column. *Flow:* 1 mL/min.

Used program: DBS_Purification run.


¹ See page 9 for order no.

II Buffer Exchange and Concentration with Centrifugal Filter Units

- 1. Take one centrifugal filter unit, add the appropriate volume of buffer in the filter device, and cap it.
- 2. Place capped filter device into the centrifuge rotor, aligning the cap strap toward the center of the rotor; counterbalance with a similar device.
- 3. Spin the device at $13,000 \times g$ (or $14,000 \times g$) for the given time.
- 4. Remove the flowthrough and repeat the steps 1-3.
- 5. Remove the assembled device from the centrifuge and separate the filter device from the microcentrifuge tube.
- 6. To recover the conjugate, place the filter device upside down in a clean centrifugal tube, aligning open cap towards the center of the rotor; counterbalance with a similar device. Spin for 2 minutes at 1,000 x g to transfer the sample from the device to the tube.

Useful Order Numbers

TABLE 3 | Order numbers.

Product Name	Order number	
Amine coupling kit 1 for proteins (>5 kDa); cNL-B48 and NHS modifier, sufficient for 5 conjugation series	CK-NH2-1-B48	
Amine coupling kit 2 for proteins (>5 kDa); cNL-B48 and NHS modifier, sufficient for 5 conjugation series (spin column purification)	CK-NH2-2-B48	
Amine coupling kit 7 for proteins (>5 kDa) with a low pI (< 6); cNL-B48 and NHS modifier, sufficient for 5 conjugation series	CK-NH2-7-B48	
Centrifugal filter unit (3 kDa MWCO), 5 pcs.	CF-003-5	
Centrifugal filter unit (10 kDa MWCO), 5 pcs.	CF-010-5	
Chromatographic column	TB-CC-1-1	
10x Buffer A pH 7.2 (50 mL of: $500 \mathrm{mM} \mathrm{Na_2HPO_4/NaH_2PO_4}$, 1.5 M NaCl) Yields 0.5 L of: $500 \mathrm{mM} \mathrm{Na_2HPO_4/NaH_2PO_4}$, 150 mM NaCl	BU-P-150-10	
$5x$ Buffer B pH 7.2 (50 mL of: 250 mM Na_2 HPO $_4$ /NaH $_2$ PO $_4$, 5 M NaCl) Yields 0.25 L of: 50 mM Na_2 HPO $_4$ /NaH $_2$ PO $_4$, 1 M NaCl	BU-P-1000-5	
1x Buffer C pH 8.0 (12 mL of: 50 mM Na2HPO4/NaH2PO4, 150 mM NaCl)	BU-C-150-1	

My Notes

My Notes

Contact

Dynamic Biosensors GmbH

Perchtinger Str. 8/10 81379 Munich Germany

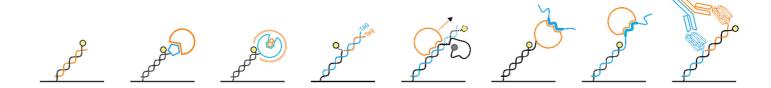
Phone: +49 89 89 74 544 0

Dynamic Biosensors Inc.

300 Trade Center, Suite 1400

Woburn, MA 01801

USA


Phone: +1 781 404 6126

Order Information Phone: +49 89 89 74 544 0

Email: order@dynamic-biosensors.com

Technical Support Phone: +49 89 89 74 544 66

Email: support@dynamic-biosensors.com

switchSENSE® is a proprietary measurement technology by Dynamic Biosensors GmbH. Instruments and biochips are engineered and manufactured in Germany.

©2023 Dynamic Biosensors GmbH | Dynamic Biosensors Inc. All rights reserved.